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ABSTRACT 

One of the most productive ecosystems mangrove, is the largest carbon absorber. In order to 
safeguard, conserve, and plan for replanting these priceless natural resources, reliable thematic maps of 
mangrove ecosystems and models for mangrove above-ground biomass (AGB) assessment are essential. This 
research emphasizes the capacities of SAR images for mangrove characteristics mapping, and the model 
generated is verified using ground truth data collected from the field survey of 127 sample points. Mangrove 
vegetation is mapped using a pixel-based random forest (RF) classifier, with an average overall classification 
accuracy of 91% and RMSE of 0.506. For AGB model generation the machine learning techniques applied to 
the dataset are Extra Trees Regressor, XGB Regressor, Random Forest Regressor, Bagging Regressor, and 
Decision Tree Regressor. Comparatively, it is found that Extra Trees Regressor demonstrated a good validation 
accuracy of 66% with 0.10 RMSE. This work validates the applicability of Random Forest (RF) and Extra Trees 
Regressor algorithms for mapping and estimating AGB for a unique landlocked mangrove site of Guneri. 
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INTRODUCTION 
 

One of the most biodiverse habitats along 
tropical seacoasts and bays is mangrove forests, 
which are made up of salt-tolerant plants with 
aerial breathing roots that act as sediment traps 
and support a variety of marine creatures 
Mangrove serves as a barrier to stop hurricanes, 
tsunamis, and ocean waves from destroying the 
coastal area. Mangrove controls coastal flood 
and erosion and safeguards inland farms, 
ranches, and other settlements close to the coast 
from storms like cyclones and hurricanes. The 
mapping of the world’s carbon stores is 
becoming increasingly accurate, and fluxes have 
accelerated significantly in recent years. 
However, these evaluations have mostly 
disregarded mangroves due to their modest area 
and difficult conditions (Le Toan et al. 2011). It 
has long been accepted that most of the regions 
with a diverse range of mangroves are either 
inaccessible or logistically challenging to do 
research in the field conditions and is time-
consuming (Nandy et al. 2011). As dwarf 
mangroves’ aboveground biomass (AGB) may 
be as little as 8 t/ha to as high as >500 t/ha in the 
Indo-Pacific region’s riverine and fringe 
mangroves. One of the main markers of a 
forest’s carbon content is its AGB, which is 
simple to measure in the field but necessitates 
the removal of trees; hence a different approach 
is needed (Molto et al. 2013). Radar sensors 
allegedly have the ability to identify the 

volumetric properties of dense foliage (Neumann 
et al. 2012). Due to polarization, sensitivity to 
moisture (dielectric constant), surface 
roughness, varying incident angles, and strong 
penetration capabilities, SAR has the potential to 
be used for forest investigations (Sinha et al. 
2015). This study aimed to develop a robust 
model for distinguishing mangroves from non-
mangroves and a model for mangrove above-
ground biomass estimation using spectral 
signatures (produced by SAR remote sensing) 
and morphological characteristics of mangroves. 
This model’s foundation is built on the mangrove 
vegetation, which was measured for height, 
width, latitude, and longitude. The model 
prepared here takes the sigma values generated 
by the SAR sensors and the ground truth values 
as input to distinguish mangroves and non-
mangroves regions and then estimates the AGB 
for mangroves, with the help of machine learning 
algorithms and also validates allometric models 
for mangrove above-ground biomass estimation 
The research was conducted in the village of 
Guneri’s mangrove forest. 
 
MATERIALS AND METHODS 
 
Study Area: The Kuchchh district in Gujarat is 
home to one of the most extensive mangrove 
forests in India. These mangroves are fast 
deteriorating earlier they used to be 30-35 
hectares in size, but now they have reduced to 
just around 13 hectares. The hurricane of 1998 
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devastated a large portion of the groves, and the 
wood borer bug decimated the rest. As a result, 
the Guneri mangrove is an important study site 
(Nesha et al. 2020). Avicennia Marina is the only 
species that dominates the site. 
 
Data Collection 
 

The study site in the research is Guneri 
Mangroves of Kutch, which are different from 
coastal mangroves and are having tree-like 
structures instead of shrubs, hence they are a 
good carbon pool for AGB. The study area has 
an equal probability of being sampled and a total 
of 123 trees were randomly picked and 
measured for their height and DBH. DBH was 
calculated by measuring the circumference of the 
stem 4 and ½ feet above the ground. The 
circumference was calculated to |DBH| using 
equation 1: 
 
DBH = circumference/π,       where π = 3.14 (1) 
 

This method can be used to construct 
allometric equations based on the measured 
data from the harvested trees, such as the 
diameter at breast height (DBH), tree height, and 
timber volume. In the current study to generate 
the ground truth AGB an existing allometric 
equation (Phillips et al. 2009) is used, as shown 
in equation 2; the choice of an allometric model 
is crucial and should be based on the study’s 
goal and the dataset’s characteristics. Allometric 
models should reflect the DBH range and 
ecology under investigation (Elmahdy et al. 
2020). 
AGB = 0.162 ∗ H1.81∗ DBH1.24         (2)                                                           
Where, H is height and DBH is breast height 
diameter. 
 
Reference Samples 
 

Accurate visual interpretation in this work 
required gathering reference data from high-
resolution satellite images. To lessen the 
problem of mixed pixels by avoiding fragmented 
areas, homogeneous sites were taken into 
consideration for reference sample collecting. 
Three classes (mangrove, non-mangrove 
vegetation, and barren land) in total were 
created, each with sufficient reference samples 
and the right spatial distribution. The reference 
samples for the training and test were then 
arbitrarily split into two groups. Due to random 

splitting, the final classification scores exhibit 
little bias. SAR data extraction from ground truth 
data. In this study, ground truth data (height, 
width and DBH) were collected and tagged with 
a GPS location representing the coordinates 
(latitude and longitude), these collected 
coordinates were projected on a pre-processed-
on Sentinel-1 SAR imagery, and VH VV 
backscatter coefficient values were extracted 
using QGIS 3.15 and a python script. The 
extracted VH and VV values were correlated with 
the actual biomass data which was calculated 
from the collected observations from the sites. 
Overall, 123 separate tree samples were 
collected and AGB was calculated from the study 
region for the purpose of estimating the biomass 
of the trees. In this study, generative adversarial 
networks were utilized to create artificial data 
(GAN). Ian Goodfellow (Elmahdy et al. 2020) 
introduced Generative Adversarial Networks 
(GANs) to address the adversarial challenge 
This part is divided into three subsections, each 
of which provides a detailed explanation of the 
AGB estimating model, classification 
methodology, and preparation of satellite data. 
 
SAR Data Preprocessing 

 
Each Sentinel-1 image underwent five 

pre-processing phases, including the following: 
orbit file correction, GRD border noise reduction, 
thermal noise removal, radiometric calibration, 
and terrain correction. Using the following 
equation, the digital numbers (DN) of SAR 
intensity data were transformed to Normalized 
Radar Cross section (NRCS or gamma-0) data 
(in dB): 
yo (dB)=10∗log10(DN)2−CF  (3) 

CF is the calibration factor offered in the 
metadata file for each polarisation data point. 
The DN values of the SAR image were 
transformed into normalized backscatter values 
with the below coefficients (Manna et al. 2020): 
yo(dB)=10∗log10(DN)2−83      (4) 
Here, 83 is the calibration factor for dual-
polarized data. 
 
Mangrove Classification 
 

Machine learning algorithms must be 
used to accurately and affordably categorize and 
map mangrove forests, and these algorithms 
must be learned using training datasets that 
have greater spatial resolution and algorithm 
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optimal parameterization. The RF technique has 
been used in the past to map and categorize 
mangroves using remote sensing data and can 
offer a greater grade of classification than linear 
classifiers. The system does well at mapping 
mangroves on a regional scale and at handling 
data that contains unclassified pixels. One of the 
most well-liked techniques for non-parametric 
ensemble machine learning and high-quality 
mangrove categorization and environmental 
modeling is the random forest algorithm. 
Regression and classification trees are combined 
in it (CART) (Mondal et al. 2019). Random forest 
(RF), a classifier, has consistently been shown to 
be a successful approach for mapping 
mangroves (Quang et al. 2020). For example, 
when researchers tested four regularly used non-
parametric classifiers for mapping basis function 
kernels and regularised discriminant analysis. 
The tremendous potential of the RF classifier for 
mapping the mangrove environment led to the 
implementation of a pixel-based RF classifier 
within GEE for this project. The mangrove 
ecosystem, the RF classifier came out on top 
along with the support vector machine (SVM) 
with linear and outspread.  
 
Mangrove AGB Estimation 
 

Hypothetically, stand density, DBH, and 
species all have a direct impact on forest AGB. 
An important topic is how to utilize multisource 
remote sensing datasets to their maximum 
potential. We have the biomass and associated 
imagery data over a set of sites inside a research 
region following the field campaign, remote 
sensing data acquisition, and processing. 
Assume, B ij = 1,2, 3,..., N is the biomass, and X 
is assumed to be the data vector. The AGB 
estimation is to discover the prediction model P: 
     Bˆ = P(X)           (5)               
The purpose of developing this model to 
minimize the error of estimation:  

          (6)                                                                      
 

Machine learning techniques such as 
neural networks, K nearest neighbor, regression 
trees (RT) like Extra Tree Regressor, XGB 
Regressor, AdaBoost Regressor, Random 
Forest, and MaxEnt are some linear and 
nonlinear regression machine learning methods 
that can be used as the prediction model. When 

creating prediction models using a parametric 
method like regression analysis, factors such as 
the spectral responses at optical data, 
backscattering, and attributes obtained from 
PolSAR and PolInSAR data, various indices from 
lidar data, and picture textures can be employed 
directly. However, the precise selection of the 
training dataset accounts for a portion of the 
output error in a single RT. Random Forests are 
made to generate precise forecasts without over-
fitting the data. Random forests refer to the 
process of building multiple trees using a 
randomized subset of variables using bootstrap 
samples. Non-parametric methods utilizing a 
variety of ML algorithms have shown to be more 
successful than parametric techniques using 
linear models for mapping and predicting forest 
AGBs. A lot of research is done in the field of 
mangrove AGB mapping using non-parametric 
regression methods such as artificial neural 
network (ANN), random forest regression (RFR), 
and support vector regression (SVM), and some 
recent studies have experimented with gradient 
boosting decision trees (GBDT) and extra 
gradient boost regression (XGBR) techniques.  
 
RESULTS AND DISCUSSION 
 

The generated data were then tested 
using several regression methods such as Extra 
Trees Regressor, XGB Regressor, Random 
Forest Regressor, Bagging Regressor, and 
Decision Tree Regressor. Table 1 displays the 
performances of the models on different SAR 
band combinations. The mean cross-validation 
score of 0.37 was high on the VH band when the 
extra tree model was used, whereas the score 
was only 0.35 for the same VH band when the 
XGB regressor was used. From this, we can 
conclude that VH band contributes more in 
estimating above-ground biomass. After taking 
the VH band into consideration, we used an 
extra tree regressor to make a prediction about 
the AGB of the entire Guneri area. The heat map 
shown in Figure 1 was generated from the 
predicted AGB by using the VH SAR band. The 
area with an AGB ranging from 171-193 kg/m2 
had the highest biomass, followed by the area 
with an AGB ranging from 128-171 kg/m2. Land 
that has a biomass of anywhere between 0 and 
107 kg/m2 can be referred to as barren land. 
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Fig. 1: Heat map generated from predicted AGB using VH band 

Table 1: Mangrove discrimination from other vegetation using Sentinel imaging and machine learning 
 

Models Band Used R2 RMSE MSE Mean CV Scores 

Extra Trees Regressor Sigma0 VH db 0.65 0.12 0.01 0.37 

Extra Trees Regressor Sigma0 VV db 0.65 0.11 0.01 0.29 

Extra Trees Regressor Sigma0 VH db & Sigma0 VV db 0.65 0.11 0.01 0.34 

XGB Regressor Sigma0 VH db 0.65 0.12 0.01 0.35 

XGB Regressor Sigma0 VV db 0.65 0.12 0.01 0.27 

XGB Regressor Sigma0 VH db & Sigma0 VV db 0.65 0.11 0.01 0.31 
 

LULC mapping of the study area
 

If broadly categorized the land cover 
features present in the study area, then it 
contains only three types of features namely 
barren land, mangrove forest, and grass/non-

mangrove. We will be using supervised 
classification techniques to classify the study 
area into three mentioned categories. Random 
Forest machine learning algorithm was used for 
LULC classification. 

 

 
Fig. 2 Classified LULC map using random forest ML techniques 

 

Figure 2 (a) shows the classified map 
generated using RF, (b) an optical image of the 
study area, and (c) a geo-referenced 
classification map overlay on a google earth 
image. The achieved accuracy with K fold RF 
classification is 91%, the RMSE is 0.526, the 

contribution of the VH spectrum is 0.506, and the 
contribution of the VV spectrum is 0.339. 
According to the classified map, the overall land 
distribution of the study area is as follows: 28% 
barren land, 18% mangroves, and 54% 
grass/non-mangrove.  
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CONCLUSION  
 

In this study, a workflow is proposed to 
produce a mangrove ecosystem map and 
mangrove AGB estimation resulting in 
respectable accuracy. For mangrove and non-
mangrove classification, a simple but robust 
Random Forest classifier is used, which 
produces an average accuracy of 91% and 
RMSE of 0.506. For AGB model generation 
machine learning techniques are applied to the 
datasets. The generated data were then tested 
using several regression methods such as Extra 
Trees Regressor, XGB Regressor, Random 
Forest Regressor, Bagging Regressor, and 

Decision Tree Regressor. The comparative study 
of the selected models is shown in Table 1, and 
Extra Trees Regressor demonstrated a good 
validation accuracy of 66% with 0.10 RMSE, 
followed by XGB Regressor (65%), and Random 
Forest Regressor (65%). This work validates the 
applicability of Random Forest (RF) and Extra 
Trees Regressor algorithms for mapping and 
estimating AGB for a unique landlocked 
mangrove site of Guneri, and it is observed that 
the results and robustness of the model are 
highly affected by the usage of a larger dataset 
and the geographical parameters of the study 
site. 
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