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ABSTRACT 

Arbuscular mycorrhizal fungi (AMF) and Trichoderma spp. are pivotal, yet distinct, architects of 
rhizosphere health whose combined activities offer a powerful, sustainable route to crop protection. This review 
synthesizes current knowledge on the molecular, biochemical, and ecological facets of AMF–Trichoderma 
interactions that underpin coordinated plant immunity. AMF initiate symbiosis through strigolactone-mediated 
signaling and Myc-factor perception via the common symbiosis signalingpathway, leading to arbuscule 
formation, enhanced nutrient exchange and systemic priming. Complementarily, Trichoderma spp. exerts direct 
antagonism against pathogens through mycoparasitism, hydrolytic enzymes and secondary metabolites, while 
also eliciting host defenses and inducing pathogenesis-related proteins. Co-inoculation studies reveal 
synergistic outcomes improved root colonization, amplified antioxidant and defense enzyme activities, 
modulation of SA/JA/ET signaling, and reshaping of the rhizosphere microbiome toward disease-suppressive 
states. We evaluate evidence from pot and field experiments, highlight mechanistic overlaps between 
mycorrhiza-induced resistance and Trichoderma-mediated ISR, and discuss how common mycorrhizal 
networks may amplify interplant defensesignaling. Critical gaps are identified, including the molecular basis of 
compatibility, strain-specific effects, formulation challenges, and long-term ecosystem impacts. We advocate 
integrative approaches combining multi-omics, controlled ecological trials, and formulation science to translate 
laboratory insights into robust bioinoculant strategies. By decoding this underground cross-talk, the review 
frames AMF–Trichoderma consortia as a promising, ecologically grounded component of next-generation crop 
health management, preferable in climate resilient agroecosystems. 
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INTRODUCTION 
 

Arbuscular Mycorrhizal Fungi (AMF), the 
hidden treasure chest beneath the soil 
constitutes an indispensable component of the 
subterranean “wood-wide web.” Representing 
one of the most ancient fungal lineages, AMF 
have fossil records extending over 400 million 
years, signifying their primordial role in the 
terrestrial colonization of plants and 
establishment of root symbioses (Nadeem et al., 
2017 ;). Their ecological ubiquity and functional 
diversity make them vital to plant health and soil 
ecosystem stability. Nearly 80–90% of vascular 
plants, including approximately 90% of cultivated 
crops, establish symbiotic associations with AMF 
(Diagne et al., 2020).The ecological significance 
of AMF and other beneficial microbes extends 
beyond nutrient acquisition( Srivastava and 
Bora, 2023). These fungi in association with 
other microbes facilitate improved uptake of 
phosphorus, nitrogen, and trace minerals while 
enhancing water relations and plant resilience 

under abiotic stresses such as drought, salinity, 
and heavy metal toxicity (Bora and Bora, 2008a; 
2020; Chen et al., 2020), thereby paving the way 
for bioprospecting soil-plant heath (Srivastava et 
al., 2022), by exploiting the microbial diversity of 
rhizosphere to rhizosphere hybridization 
(Srivastava et al., 2025).  Moreover, as the most 
widespread and biomass-dominant group among 
mycorrhizal fungi, AMF play a pivotal role in the 
suppression of soil-borne pathogens through a 
repertoire of antagonistic and inhibitory 
interactions (Berg, 2009). Mycorrhizal 
colonization not only enhances plant growth and 
nutrient dynamics but also contributes to root 
disease mitigation by fortifying cell walls through 
lignification and callose deposition, competing 
with pathogens for infection sites, and altering 
the rhizospheric microbiome to favour beneficial 
antagonists (Sikes et al., 2009). 

Complementing the beneficial effects of 
AMF, Trichoderma species have emerged as 
potent biocontrol agents (BCAs) with broad- 
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spectrum efficacy against phytopathogens of 

annual  (Sharma et al., 2020;2021 ; Bora et al., 

2023) as well as perennial crops( Saikia et al., 

2021; Bora et al., 2021a ; 2021b; Bora and Bora, 

2022)  . These fungi colonize plant roots and the 

rhizosphere, where they enhance plant vigour 

and immunity through multiple mechanisms, 

including the secretion of hydrolytic enzymes 

(chitinases, glucanases, and proteases) and the 

production of secondary metabolites such as 

antibiotics and volatile organic compounds 

(VOCs) (Harman et al., 2004; Mukherjee et al., 

2011). Economically important species, including 

T. harzianum, T. asperellum, T. viride, T. 

atroviride, T. virens, and T. reesei, are widely 

exploited for their multifaceted roles in promoting 

plant growth and suppressing soil-borne 

pathogens (Sharma et al., 2014 ;Bora et al., 

2020a,b ;2022). These facts underline the 

importance of microbes in plant health solutions. 

The compatibility between AMF and 

Trichoderma species presents a promising 

synergistic strategy in the biological 

management of soil-inhabiting pathogens. 

Studies indicate that co-inoculation of these 

beneficial microbes can amplify plant growth 

responses, nutrient uptake, and systemic 

resistance (Bharat, 2016).  Notably, Trichoderma 

spp. has been identified as one of the most 

effective BCAs against many soil and foliar 

pathogens significantly reducing disease 

incidence and enhancing plant biomass under 

various application regimes (Asad et al., 2014;  

Bora et al. 2023; Tabing et al., 2025) , besides 

its compatibility with agrochemicals (Bharadwaz 

et al., 2023) and non-target pests (Bharadwaz et 

al., 2024) for engineering plant biometrics ( Bora 

et al., 2025).While, AMF primarily function 

through mutualistic nutrient exchange and 

systemic defenseprisming, T. asperellum exerts 

its influence via antagonistic biocontrol 

mechanisms. Their combined application thus 

represents a holistic and complementary 

approach to crop management integrating 

symbiotic enhancement with pathogen 

suppression. Harnessing this dual functionality 

could revolutionize sustainable agriculture by 

reducing chemical dependencies and fortifying 

plants against biotic and abiotic stresses. 

AMF–PLANT ASSOCIATION FOR MULTIPLE 
BENEFITS 
 

The establishment of arbuscular 
mycorrhizal symbiosis represents one of the 
most sophisticated examples of interkingdom 
communication, underpinned by a finely tuned 
molecular dialogue between plants and fungi. 
Akiyama et al. (2005) demonstrated that the 
initiation of AMF–plant interaction begins when 
plant roots exude strigolactones into the 
rhizosphere, serving as signaling molecules that 
stimulate hyphal branching and metabolic 
activation in arbuscular mycorrhizal fungi. In 
response, AMF release lipochitooligosaccharide-
based Myc factors, which are perceived by the 
plant through LysM-type receptor kinases. This 
recognition event activates the common 
symbiosis signalingpathway, a conserved 
signaling cascade also employed during 
rhizobial nodulation (Parniske, 2008; Maillet et 
al., 2011).The early stages of colonization 
involve the formation of hyphopodia on the root 
epidermis, specialized structures that mediate 
fungal adhesion and penetration into the outer 
cell layers (Genre et al., 2005). Following 
successful entry, fungal hyphae proliferate both 
interand intracellularly through the cortical tissue, 
culminating in the differentiation of highly 
branched arbuscules. These arbuscules act as 
the primary sites of nutrient exchange, facilitating 
bidirectional transferprimarily of phosphorus from 
the fungus to the plant, and photosynthetically 
derived carbon from the host to the fungus 
(Smith and Read, 2010). 

The establishment and maintenance of 
functional arbuscules are tightly regulated by 
plant-derived transcriptional networks. Key 
transcription factors such as RAM1 and MYB1 
orchestrate the activation of symbiosis-specific 
genes essential for arbuscule development and 
turnover (Luginbuehlet al., 2017). Additionally, 
phytohormones including abscisic acid, 
gibberellins, and ethylene exert modulatory 
effects on the extent and intensity of AMF 
colonization, reflecting a complex hormonal 
crosstalk that fine-tunes symbiotic compatibility 
(Mukherjee andAné, 2011).Collectively, the 
colonization strategy of AMF embodies a highly 
conserved yet remarkably adaptable process 
that has co-evolved with terrestrial plants. This 
intricate molecular synergy underscores the 
central role of AMF as pivotal mediators of 
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nutrient exchange, signaling integration, and 
ecosystem stability across both natural and 
agricultural systems. 
 
AMF FOR PLANT GROWTH PROMOTION 
AND NUTRIENT ACQUISITION  
 

AMF represent an integral component of 
plant health and soil fertility, profoundly 
influencing plant growth, nutrient uptake, and 
overall physiological performance( Srivastava 
and Bora, 2023 ; Bora et al., 2024 ). The 
symbiotic association between AMF and plant 
roots significantly enhances nutrient acquisition 
efficiency, particularly under nutrient-limited or 
stress-prone conditions (Begum et al., 2019). By 
extending an extensive extraradical hyphal 
network beyond the rhizosphere, AMF effectively 
expand the absorptive surface area of roots, 
facilitating the uptake of key macronutrients such 
as nitrogen (N), phosphorus (P), and potassium 
(K), as well as essential micronutrients including 
zinc (Zn) and iron (Fe) (Smith and Smith, 2011; 
Lehmann et al., 2014 ; Srivastava et al., 2023). 

Phosphorus acquisition is one of the 
most widely documented benefits of AMF 
symbiosis due to its low solubility and mobility in 
soil. Through their hyphal extensions, AMF can 
access phosphate ions from soil regions beyond 
the depletion zone surrounding roots, thereby 
increasing phosphorus availability to host plants. 
AMF colonization has been shown to enhance 
plant phosphorus uptake by 20–80%, depending 
on soil conditions and fungal species involved 
(Heijden et al., 2015). Nitrogen, though less 
extensively studied in AMF systems, is also 
acquired through fungal networks, with AMF 
facilitating the uptake of both inorganic 
(ammonium and nitrate) and organic nitrogen 
forms (Hodge and Fitter, 2010). Furthermore, 
interactions between AMF and nitrogen-fixing or 
mineralizing soil microbes can indirectly 
augment nitrogen availability to plants 
(Govindarajulu et al., 2005; Leigh et al., 2009). 
Potassium uptake, though more mobile in soil, is 
similarly enhanced by AMF associations, as 
colonization improves root morphology and 
alters rhizosphere chemistry, thereby promoting 
solubilization and efficient translocation of K 
(George et al., 1995; Garcia and Zimmermann, 
2014). Beyond their role in nutrient uptake, AMF 
profoundly influence plant physiology and stress 
resilience. The symbiosis enhances water 

uptake and retention, improving relative water 
content and water-use efficiency under drought 
stress (Ruiz-Lozano et al., 2016). Plants 
colonized by AMF exhibit improved 
photosynthetic performance through enhanced 
stomatal regulation, elevated chlorophyll content, 
and greater photosystem II efficiency. The 
presence of AMF also upregulates antioxidant 
enzymes such as peroxidase (POD), catalase 
(CAT), and superoxide dismutase (SOD), which 
mitigate oxidative damage under environmental 
stress (Dey and Ghosh, 2022). Additionally, AMF 
promote the accumulation of osmoprotectants 
like proline, contributing to salinity and drought 
tolerance (Evelin et al., 2009). The influence of 
AMF extends to the modulation of plant 
hormonal balance, stimulating the synthesis of 
growth-regulating phytohormones such as 
auxins, cytokinins, and gibberellins, which 
collectively promote enhanced root and shoot 
development (Ludwig-Müller, 2010; Bucher et 
al., 2009). At the ecosystem level, AMF 
contribute to soil aggregation and structural 
stability through the secretion of glomalin-related 
soil proteins, which improve aeration, water 
retention, and microbial habitat quality (Rillig, 
2004; Miransari, 2011).  Altogether, the AMF–
plant symbiosis represents a cornerstone of 
sustainable crop production systems, providing a 
natural and multifaceted mechanism for 
improving plant nutrition, productivity, and 
resilience while reducing dependence on 
chemical fertilizers. 
 
AMF-MEDIATED PLANT DEFENSE AGAINST 
PHYTOPATHOGENS 
 

AMF play a dual role in modulating plant 
immunityinitially suppressing host defenses to 
facilitate symbiotic establishment, and 
subsequently enhancing systemic resistance 
against diverse pathogens. Fiorilli et al. (2024) 
demonstrated that AMF alter plant immunity 
through a finely tuned regulatory process, 
beginning with transient suppression of the basal 
immune response to allow fungal colonization. 
During early symbiotic signaling, plant roots 
secrete strigolactones that activate AMF hyphae, 
which in turn release lipochitooligosaccharide-
based Myc factors. These are recognized by 
LysM-type receptor kinases such as OsCERK1 
and OsMYR1, triggering the Common Symbiosis 
SignalingPathway characterized by nuclear 
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calcium spiking rather than cytosolic Ca²⁺ influx, 

thereby enabling colonization without eliciting 

immune rejection (Carotenuto et al., 2017). 

To maintain compatibility, AMF secrete 

effector proteins that modulate plant immune 

responses. Notably, SP7 and RiSLM, two well-

characterized effectors, interact with plant 

transcription factors such as ERF19 and bind to 

chitin fragments, thereby masking fungal cell 

wall components from host chitinases and 

preventing defense gene activation (Kloppholzet 

al., 2011; Zeng et al., 2020). Once symbiosis is 

established, AMF-mediated signaling contributes 

to the activation of a broad spectrum of defense 

mechanisms, including enhanced nutrient 

uptake, competitive exclusion of pathogens, 

induction of systemic resistance, and modulation 

of host immune networks (Smith and Read, 

2011). 

Experimental evidence supports the 

protective role of AMF against multiple 

pathogens. For instance, Rhizophagus 

irregularis suppressed Plasmoparaviticola 

infection in grapevine by modulating the 

biosynthesis of stilbenoids and inhibiting 

pathogen effector activity (Cruz-Silva et al., 

2021). Similarly, Funneliformismosseae 

colonization in tomato upregulated genes 

associated with flavonoid and chlorogenic acid 

biosynthesis, conferring resistance to Tomato 

Mosaic Virus (Aseel et al., 2019). Such 

mycorrhiza-induced metabolic reprogramming 

primes the plant for rapid and amplified defense 

upon pathogen challenge. However, Similar 

reprogramming in microbial diversity of 

rhizosphere as well endosphere of host plant 

either with invasion of pathogen (Bora et al., 

2019; Das et al., 2023; Kumari et al., 2023) or 

inoculation with microbial antagonist are widely 

reported (Bora et al., 2016a; 2016b; 2020a) 

through the release of wide ranging secondary 

metabolites as plant defense molecules (Bora et 

al., 2023). Plants associated with AMF often 

exhibit primed immunity, a physiological state 

characterized by faster and stronger activation of 

defense responses upon infection. Primed plants 

show elevated reactive oxygen species (ROS) 

accumulation, callose deposition, and increased 

pathogenesis-related (PR) protein levels 

(Mauch-Mani et al., 2017). Recognition of 

microbial signals occurs via pattern-recognition 

receptors (PRRs) and resistance (R) proteins, 

initiating pattern-triggered immunity (PTI) and 

effector-triggered immunity (ETI), respectively 

(Couto and Zipfel, 2016; Bigeardet al., 2015). 

AMF-mediated immunity (MIR) shares 

mechanistic similarities with induced systemic 

resistance (ISR) and systemic acquired 

resistance (SAR), leading to broad-spectrum, 

long-lasting protection against biotic stresses 

(Fiorilli et al., 2024). 

Phytohormones play a pivotal role in 

orchestrating AMF-induced defense. Liao et al. 

(2018) reported that nearly all major plant 

hormones participate in regulating AMF 

symbiosis, with dynamic shifts in their levels 

across colonization stages. Salicylic acid (SA) 

exhibits a biphasic responseinitially 

accumulating to mediate early recognition and 

subsequently acting to prevent over-colonization 

(Jung et al., 2012). Conversely, jasmonic acid 

(JA) and its active form JA-Ile remain 

consistently upregulated, enhancing resistance 

through MYC2-dependent pathways (Fiorilli et 

al., 2024). Ethylene (ET) and abscisic acid (ABA) 

function as fine-tuning regulators, particularly 

under nutrient limitations or during callose 

deposition (Martínez-Medina et al., 2016). 

Mycorrhiza-induced resistance (MIR) 

predominantly operates through JA and ET 

signaling networks, activating genes such as 

AOS1, AOC1, and OPR3 (JA biosynthesis), 

NCED (ABA biosynthesis), and PAL, a key 

enzyme in the phenylpropanoid pathway (Pozo 

and Aguilar, 2007; López et al., 2010; Pieterse et 

al., 2014). Remarkably, AMF can transmit 

defense-related signals through common 

mycorrhizal networks (CMNs), enabling 

interplant communication. This facilitates 

systemic immunity across neighbouring plants 

via mobile signals, including JA and SA (Song et 

al., 2010).Collectively, AMF-mediated plant 

defense integrates transcriptional, biochemical, 

and physiological mechanisms, reinforcing both 

local and systemic immunity. The capacity of 

AMF to modulate complex immune signaling 

while maintaining mutualistic harmony 

underscores their immense potential as natural 

allies in sustainable biocontrol strategies and 

resilient crop production systems. The biocontrol 

efficacy of AMF against a variety of pathogens 

has further been summarised (Table 1).  
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Table1: Biocontrol efficacy of different AMF species against various phytopathogens 
 

Host Plant Disease / Pathogen AMF Strain 
Responses related to AMF 

Inoculation 
References 

Multiple crops Phytophthora spp., 
Rhizoctonia solani, 
Thielaviopsis basicola, 
Fusarium oxysporum 
 

Glomus mosseae, G. 
intraradices, G. 
etunicatum 

Demonstrated broad-spectrum 
suppression of soil-borne 
phytopathogens through mycorrhizal 
colonization and improved plant 
vigour. 

Schönbeckand 
Dehne (1977); 
Steinkellner et 
al. (2012) 

Solanum 
lycopersicum L. 

Meloidogyne javanica Funneliformismosseae Caused reduction in galling, 
nematode reproduction, and 
morphometric parameters of females 
in tomato plants inoculated. 

Siddiqui et al. 
(1998) 

Solanum 
lycopersicum 

Wilt (Fusarium 
oxysporum) 

Funneliformismosseae Reduced pathogen population and 
wilt incidence; enhanced plant growth 
and phosphorus uptake. 

Khallalet al. 
(2007) 

Zea mays L. Striga hermonthica Del 
Benth (1836) 

Glomus etunicatum, 
Scutellospora fulgida, G. 
margarita 

Reduced Striga plant incidence, 
increased plant biomass and 
phosphate content. 

Othiraet al. 
(2012) 

Solanum 
tuberosum 

Bacterial wilt 
(Ralstonia 
solanacearum) 

Glomus intraradices, G. 
etunicatum 

Combination treatments resulted in 
zero disease severity and highest root 
colonization (36–50%), indicating 
strong suppression of bacterial wilt 
and enhanced plant health. 

Tahatet al. 
(2012) 

Multiple crops Meloidogyne incognita, 
Heteroderaglycines 

Glomus mosseae, G. 
fasciculatum 

Reduced nematode infection via 
defensive gene activation and 
competitive root colonization. 

Vos et al. 
(2013); De Sá 
and Campos 
(2020) 

Solanum 
tuberosum 

Potato virus Y (PVY) Rhizophagus irregularis Milder symptoms and significant 
stimulation of shoot growth observed 
in PVY-infected plants inoculated with 
AMF. 

Thiem et al. 
(2014) 

Morus spp. Pseudomonas 
syringaepv. syringae 

Glomus fasciculatum + 
phosphate 

Co-inoculation reduced disease 
incidence and improved plant health 
parameters. 

Kamble and 
Agre (2014) 

Solanum 
lycopersicum 

Leaf spot (Alternaria 
alternata) 

Glomus fasciculatum Successful prevention of A. alternata-

induced infection; improved 
physiological performance. 

Nair et al. 

(2015) 

Glycine max Pseudomonas 
syringaepv. glycinea 

(Psg) 

Entrophospora 
infrequens 

Only E. infrequens significantly 
reduced pathogen colonization; 
enhanced leaf biomass and stem 
mass, highlighting species-specific 
bioprotection. 

Malik et al. 
(2016) 

Cucumis melo L. Fusarium wilt Funneliformis mosseae Showed the greatest capacity for 
reduction of disease incidence. 

Martínez-edina 
et al. (2011) 

Saccharum 
officinarum L. 

Striga hermonthica Del 
Benth (1836) 

Glomus etunicatum, 
Scutellospora fulgida, G. 
margarita 

Stimulated plant growth, biomass, 
and physiological parameters in 
presence of Striga. 

Manjunatha et 
al. (2018) 

Solanum 
lycopersicum 

Bacterial wilt 
(Ralstonia 
solanacearum) 

Glomus mosseae Complete suppression of disease; 
increased shoot/root biomass, spore 
count, and nutrient uptake. 

Aguk et al. 
(2018) 

Glycine max Root pathogens 
(unspecified) under N 
fertilization 

Rhizophagus irregularis Co-inoculation improved biomass and 
chlorophyll content, demonstrating 
enhanced disease resistance and 
nutrient-use efficiency. 

Spagnoletti et 
al. (2020) 

Vitis vinifera Downy mildew 
(Plasmoparaviticola) 

Rhizophagus irregularis Altered expression of effector genes 
linked to pathogen virulence; 
disrupted infection mechanism and 
improved host resistance. 

Cruz-Silva et al. 
(2021) 

Solanum 
lycopersicum 

Botrytis cinerea; 
Pseudomonas 
syringaepv. tomato 
(Pst) and pv. oryzae 

Gigaspora margarita Induced systemic resistance; JA-
mediated signalling enhanced, 
offering broad-spectrum protection 
against fungal and bacterial 
pathogens. 

Fujita et al. 
(2022) 
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TRICHODERMA: THE MULTIFUNCTIONAL 
FUNGUS 
 

The genus Trichoderma is an ubiquitous 
Deuteromycotina  fungus widely found in the 
soil, rhizosphere, plant endosphere,  air, 
phylloplane, tree barks etc. have long been 
explored in agriculture and industry (Saikia et al., 
2022a; Handique et al., 2024). The genus 
includes around 370 species including the 
commercially used species viz., T. viride, T. 
asperellum, T harzianum, T. hamatum, T. 
Koningii. In agriculture it is used as bioagent 
against phytopathogens, growth and germination 
enhancer, as well as for biodegradation of 
organic pollutants (Rahman et al., 2021; Bora et 
al., 2024). As a bioagent against plant 
pathogens Trichoderma has been widely used in 
organic and conventional crop management 
system against many soil borne pathogens such 
as Ralsonia solanacearum in solanaceous crops  
(  Bora and Bora , 2008b ; 2010) as well as foliar 
pathogens such as Pestalotiopsis in tea (Bora et 
al., 2022), Colletotrichum spp. in chilli (Saikia et 
al., 2022 b), Xanthomonas oryze pv oryzae in 
rice (Saikia et al., 2020; Bora et al., 2025) etc. 
The bioagent showed its efficacy through in vitro 
and inplanta studies against Fusarium 
oxysporum f.sp. cubense causing wilt disease 
(Damodaran et al., 2023; Baruah et al., 2024), 
the most devastativing pathogen with wide 
genetic variability (Baruah et al., 2025). Efficacy 
of Trichoderma as entomopathogen is also being 
reported by many workers (Saha et al., 2025) 
adding more value to the bioagent. The 
biocontrol potential of Trichoderma is attributed 
to its direct antagonism as well as its ability to 
modulate host defense through ISR as indirect 
mechanism. Trichoderma produce many volatile 
and non volatile pesticidal secondary 
metabolites which directly target the pathogens. 
Further its aggressive colonization, 
hyperparasitism and growth promoting traits 
makes it a more suitable microbial candidate in 
agroecosytem (Bora and Rahman, 2022). 
However, instead of using Trichoderma alone, 
microbial consortia is found more superior and 
hence, efforts are being made to explore 
developing synthetic microbial communities 
(Sharma and Bora, 2025). Inclusion of 
Trichoderma with entomopathogens such as 
Beauveria bassiana, Bacillus thuringiensis (Erla 

et al., 2022; Yein et al., 2024) besides AMF can 
take care of multiple issues in one go.  
 
SYNERGISTIC INTERPLAY BETWEEN AMF 
AND TRICHODERMA SPP 
 

The synergistic association between AMF 
and Trichoderma species has emerged as an 
ecologically sound and sustainable strategy for 
enhancing plant growth, nutrient acquisition, and 
resistance against soil-borne pathogens. AMF 
form mutualistic associations with the roots of 
most terrestrial plants, improving mineral nutrient 
uptakeparticularly phosphorusand conferring 
tolerance to biotic and abiotic stresses (Rahman 
et al., 2023). Likewise, Trichoderma spp. are 
well-recognized rhizosphere-competent fungi 
exhibiting multiple mechanisms of biocontrol, 
including mycoparasitism, antibiosis, and 
induced systemic resistance. When these 
beneficial microorganisms are co-inoculated, 
they often exhibit synergistic effects that exceed 
the benefits conferred by either organism alone 
(Saha et al., 2025). Early investigations 
demonstrated that the combined inoculation of 
AMF with other beneficial microbes such as 
Bacillus subtilis, Pseudomonas fluorescens, and 
Trichoderma harzianumsignificantly enhanced 
the suppression of soil-borne pathogens 
including Fusarium oxysporum, Verticillium 
dahliae, and Sclerotium rolfsii (Srivastava et al., 
2010; Tanwar et al., 2013). The synergism 
between AMF and Trichoderma spp. is largely 
attributed to their complementary functional roles 
like strengthening the plant’s physical and 
nutritional defense systems, while Trichoderma 
actively suppresses pathogens through 
enzymatic degradation, antibiotic secretion, and 
competitive exclusion (Martínez-Medina et al., 
2016).  

The co-inoculation of AMF and T. 
asperellum has been shown to markedly 
improve root colonization, nutrient assimilation, 
and activation of host defense mechanisms 
compared to single inoculations (Basu et al., 
2021). This combined inoculation also induces 
significant shifts in the rhizosphere microbiome, 
fostering beneficial microbial communities that 
are suppressive to phytopathogens (Verma et 
al., 2020). Martínez et al. (2011) reported that in 
melon (Cucumis melo) challenged with Fusarium 
oxysporum f. sp. melonis, the co-application of 
four AMF species with T. harzianum enhanced 
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AM root colonizationparticularly with Glomus 
constrictum and G. intraradicesand resulted in 
improved shoot biomass, nutrient status, and 
reduced wilt severity compared with AMF alone. 
Similarly, Yuan et al. (2016) observed that the 
combined application of Glomus mosseae (Gm) 
and T. harzianum (BOF) achieved 68.2% control 
efficacy against tobacco bacterial wilt caused by 
Ralstonia solanacearum, which was substantially 
higher than that achieved by either Gm or BOF 
alone. Co-inoculated plants also exhibited 
increased height and biomass accumulation, 
demonstrating the synergistic potential of this 
dual bioinoculant approach. At the biochemical 
and molecular levels, both AMF and T. 
asperellum are capable of activating systemic 
plant defenses. Jung et al. (2012) demonstrated 
that AMF colonization enhanced the activities of 
peroxidase (POD), polyphenol oxidase (PPO), 
and phenylalanine ammonia-lyase (PAL), 
enzymes closely associated with lignification and 
the biosynthesis of antimicrobial phenolic 
compounds. Concurrently, T. asperellum 
stimulates the expression of pathogenesis-
related (PR) proteins, including PR-1, PR-3, and 
PR-5, which play essential roles in defense 
against fungal pathogens (Shoresh et al., 2010). 
Both organisms are known to modulate key 
phytohormonal signaling pathways, particularly 
those mediated by salicylic acid (SA), jasmonic 
acid (JA), and ethylene (ET), thereby generating 
an integrated and durable defense response 
(Basu et al., 2021). Beyond their influence on 
plant physiology, the synergistic interaction 
between AMF and T. asperellum also exerts 
beneficial effects on soil ecological functions. 
Rilliget al. (2015) reported that their co-
inoculation enhances microbial diversity and 
nutrient cycling within the rhizosphere. AMF 
hyphal networks promote soil aggregation and 
carbon sequestration, while T. asperellum 
enhances enzymatic activities such as 
dehydrogenase and phosphatase, contributing to 
improved nutrient mineralization and soil fertility. 
Collectively, these findings underscore the 
multifaceted advantages of integrating AMF and 
Trichoderma spp. in crop management systems. 
Their synergistic interplay not only enhances 
plant growth and disease resistance but also 
contributes to soil health restoration and 
ecological sustainability. Thus, the combined use 
of AMF and Trichoderma represents a promising 
biotechnological approach for the development 

of resilient and environmentally sustainable 
agroecosystems. 
 
CONCLUSION AND FUTURE PROSPECTS 
 

The accumulated evidence positions 
arbuscular mycorrhizal fungi and Trichoderma 
spp. as complementary and potent allies for 
sustainable crop health. Their combined 
actionsenhanced nutrient acquisition and water 
relations via AMF, together with direct pathogen 
suppression and defense elicitation by 
Trichodermacreate a multifaceted barrier against 
biotic and abiotic stresses while improving soil 
structure and ecosystem functioning. Co-
inoculation frequently yields synergistic gains in 
root colonization, defense enzyme activation, 
hormonal coordination (SA/JA/ET), and the 
assembly of disease-suppressive rhizosphere 
communities, indicating clear potential for 
integration into next-generation IPM 
strategies.However, realizing this potential at 
scale requires overcoming important constraints: 
pronounced strain- and host-specific responses, 
variable field performance under heterogeneous 
agronomic conditions, and challenges in 
formulation, delivery, and regulatory acceptance. 
Addressing these gaps demands standardized 
compatibility screening, multi-omics and 
ecological trials across diverse environments, 
durable formulation technologies, and long-term 
monitoring of ecosystem impacts 

Future studies should focus on 
overcoming the limitations of morphological 
identification of AMF, which is often hindered by 
spore plasticity and interspecific similarities. 
Incorporating molecular tools such as DNA 
barcoding and metagenomics will allow accurate 
species-level identification and selection of 
efficient strains (Sharam and Bora, 2025). Multi-
omics approaches, including transcriptomics and 
proteomics, are essential to unravel the 
molecular basis of AMF–Trichoderma asperellum 
interactions and their impact on host plant 
defense and physiology. Furthermore, 
standardizing application methods, dosage, and 
co-inoculation protocols, followed by extensive 
field validation across diverse agro-ecological 
zones, is necessary for large-scale adoption. 
Developing stable and effective bioformulations 
combining AMF and T. asperellum will be pivotal 
to translate this synergistic technology into 
practical, sustainable agricultural applications. 
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